DP-100: A-Z Machine Learning using Azure Machine Learning
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English (US) | Size: 14.59 GB | Duration: 26h 39m
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English (US) | Size: 14.59 GB | Duration: 26h 39m
Microsoft Azure DP-100: Designing and Implementing a Data Science Solution Exam Covered. Learn Azure Machine Learning
What you'll learn
Prepare for and Pass the Azure DP-100 Exam
Master Data Science and Machine Learning Models using Azure ML.
Data Processing using Python and Pandas
AzureML SDK for Python for complete Machine Learning Lifecycle.
Azure Automated Machine Learning for faster and efficient Machine Learning model development and deployment
Understand the concepts and intuition of Machine Learning algorithms
Build Machine Learning models within minutes
Deploy production grade Machine Learning algorithms
Deploy Machine Learning webservices in the simplest manner
Requirements
Basic Math is good enough. This course does not require background in Data Science. Will be great if you have one.
Free or paid subscription to Microsoft Azure is required. It may ask for Phone and/or Credit Card for verification
Description
This course will help you and your team to build skills required to pass the most in demand and challenging, Azure DP-100 Certification exam. It will earn you one of the most in-demand certificate of Microsoft Certified: Azure Data Scientist Associate. DP-100 is designed for Data Scientists. This exam tests your knowledge of Data Science and Machine learning to implement machine learning models on Azure. So you must know right from Machine Learning fundamentals, Python, planning and creating suitable environments in Azure, creating machine learning models as well as deploying them in production.Why should you go for DP-100 Certification?One of the very few certifications in the field of Data Science and Machine Learning. You can successfully demonstrate your knowledge and abilities in the field of Data Science and Machine Learning.You will improve your job prospects substantially in the field of Data Science and Machine Learning. Key points about this courseCovers the most current syllabus as on May, 2021.100% syllabus of DP-100 Exam is covered.Very detailed and comprehensive coverage with more than 200 lectures and 25 Hours of contentCrash courses on Python and Azure Fundamentals for those who are new to the world of Data ScienceMachine Learning is one of the hottest and top paying skills. It's also one of the most interesting field to work on. In this course of Machine Learning using Azure Machine Learning, we will make it even more exciting and fun to learn, create and deploy machine learning models using Azure Machine Learning Service as well as the Azure Machine Learning Studio. We will go through every concept in depth. This course not only teaches basic but also the advance techniques of Data processing, Feature Selection and Parameter Tuning which an experienced and seasoned Data Science expert typically deploys. Armed with these techniques, in a very short time, you will be able to match the results that an experienced data scientist can achieve. This course will help you prepare for the entry to this hot career path of Machine Learning as well as the Azure DP-100: Azure Data Scientist Associate exam.––- Exam Syllabus for DP-100 Exam ––-1. Set up an Azure Machine Learning Workspace (30-35%)Create an Azure Machine Learning workspaceCreate an Azure Machine Learning workspaceConfigure workspace settingsManage a workspace by using Azure Machine Learning studioManage data objects in an Azure Machine Learning workspaceRegister and maintain datastoresCreate and manage datasetsManage experiment compute contextsCreate a compute instanceDetermine appropriate compute specifications for a training workloadCreate compute targets for experiments and trainingRun Experiments and Train Models (25-30%)Create models by using Azure Machine Learning DesignerCreate a training pipeline by using Azure Machine Learning designerIngest data in a designer pipelineUse designer modules to define a pipeline data flowUse custom code modules in designerRun training scripts in an Azure Machine Learning workspaceCreate and run an experiment by using the Azure Machine Learning SDKConfigure run settings for a scriptConsume data from a dataset in an experiment by using the Azure Machine Learning SDKGenerate metrics from an experiment runLog metrics from an experiment runRetrieve and view experiment outputsUse logs to troubleshoot experiment run errorsAutomate the model training processCreate a pipeline by using the SDKPass data between steps in a pipelineRun a pipelineMonitor pipeline runsOptimize and Manage Models (20-25%)Use Automated ML to create optimal models Use the Automated ML interface in Azure Machine Learning studio Use Automated ML from the Azure Machine Learning SDKSelect pre-processing optionsDetermine algorithms to be searched Define a primary metric Get data for an Automated ML run Retrieve the best modelUse Hyperdrive to tune hyperparameters Select a sampling method Define the search space Define the primary metric Define early termination options Find the model that has optimal hyperparameter values Use model explainers to interpret models Select a model interpreter Generate feature importance data Manage models Register a trained model Monitor model usage Monitor data drift Deploy and Consume Models (20-25%) Create production compute targets Consider security for deployed servicesEvaluate compute options for deployment Deploy a model as a service Configure deployment settings Consume a deployed service Troubleshoot deployment container issues Create a pipeline for batch inferencing Publish a batch inferencing pipeline Run a batch inferencing pipeline and obtain outputs Publish a designer pipeline as a web service Create a target compute resource Configure an Inference pipeline Consume a deployed endpointSome feedback from previous students,"The instructor explained every concept smoothly and clearly. I'm an acountant without tech background nor excellent statistical knowledge. I do really appreciate these helpful on-hand labs and lectures. Passed the DP-100 in Dec 2020. This course really help.""Cleared DP-100 today with the help of this course. I would say this is the one of the best course to get in depth knowledge about Azure machine learning and clear the DP-100 with ease. Thank you Jitesh and team for this wonderful tutorial which helped me clear the certification.""The instructor explained math concept clearly. These math concepts are necessary as fundation of machine learning, and also are very helpful for studying DP-100 exam concepts. Passed DP-100."I am committed to and invested in your success. I have always provided answers to all the questions and not a single question remains unanswered for more than a few days. The course is also regularly updated with newer features.Learning data science and then further deploying Machine Learning Models have been difficult in the past. To make it easier, I have explained the concepts using very simple and day-to-day examples. Azure ML is Microsoft's way of democratizing Machine Learning. We will use this revolutionary tool to implement our models. Once learnt, you will be able to create and deploy machine learning models in less than an hour using Azure Machine Learning Studio.Azure Machine Learning Studio is a great tool to learn to build advance models without writing a single line of code using simple drag and drop functionality. Azure Machine Learning (AzureML) is considered as a game changer in the domain of Data Science and Machine Learning.This course has been designed keeping in mind entry level Data Scientists or no background in programming. This course will also help the data scientists to learn the AzureML tool. You can skip some of the initial lectures or run them at 2x speed, if you are already familiar with the concepts or basics of Machine Learning.The course is very hands on and you will be able to develop your own advance models while learning,Advance Data Processing methodsStatistical Analysis of the data using Azure Machine Learning ModulesMICE or Multiple Imputation By Chained EquationSMOTE or Synthetic Minority Oversampling TechniquePCA; Principal Component AnalysisTwo class and multiclass classificationsLogistic RegressionDecision TreesLinear Regression Support Vector Machine (SVM) Understanding how to evaluate and score modelsDetailed Explanation of input parameters to the modelsHow to choose the best model using Hyperparameter TuningDeploy your models as a webservice using Azure Machine Learning StudioCluster Analysis K-Means ClusteringFeature selection using Filter-based as well as Fisher LDA of AzureML StudioRecommendation system using one of the most powerful recommender of Azure Machine LearningAll the slides and reference material for offline readingYou will learn and master, all of the above even if you do not have any prior knowledge of programming. This course is a complete Machine Learning course with basics covered. We will not only build the models but also explain various parameters of all those models and where we can apply them. We would also look at Steps for building an ML model.Supervised and Unsupervised learningUnderstanding the data and pre-processingDifferent model types The AzureML Cheat Sheet.How to use Classification and RegressionWhat is clustering or cluster analysisKDNuggets one of the leading forums on Data Science calls Azure Machine Learning as the next big thing in Machine Learning. It further goes on to say, "people without data science background can also build data models through drag-and-drop gestures and simple data flow diagrams."Azure Machine Learning's library has many pre-built models that you can re-use as well as deploy them. So, hit the enroll button and I will see you inside the course.Best-
Who this course is for:
Developers who want to start a career in or wants to learn about the exciting domain of Data Science and Machine Learning, Existing Data Scientists who want to earn DP-100 Certification, Anyone who wants to learn Data Science and Machine Learning, Business Analysts who want to apply Data Science to solve business problems, Functional Experts who can take help of Machine Learning and build/test their hypothesis quickly, Students and non-technical professionals who want to start a career in Machine Learning, Data Engineers or Software Engineers who want to learn Data Science and Machine Learning